

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4724

Core Mathematics 4

Monday

12 JUNE 2006

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- 1 Find the gradient of the curve $4x^2 + 2xy + y^2 = 12$ at the point (1, 2). [4]
- 2 (i) Expand $(1-3x)^{-2}$ in ascending powers of x, up to and including the term in x^2 . [3]
 - (ii) Find the coefficient of x^2 in the expansion of $\frac{(1+2x)^2}{(1-3x)^2}$ in ascending powers of x. [4]
- 3 (i) Express $\frac{3-2x}{x(3-x)}$ in partial fractions. [3]
 - (ii) Show that $\int_{1}^{2} \frac{3 2x}{x(3 x)} \, dx = 0.$ [4]
 - (iii) What does the result of part (ii) indicate about the graph of $y = \frac{3-2x}{x(3-x)}$ between x = 1 and x = 2?
- 4 The position vectors of three points A, B and C relative to an origin O are given respectively by

$$\overrightarrow{OA} = 7\mathbf{i} + 3\mathbf{j} - 3\mathbf{k},$$

$$\overrightarrow{OB} = 4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$$

and
$$\overrightarrow{OC} = 5\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$$
.

- (i) Find the angle between AB and AC.
- (ii) Find the area of triangle ABC. [2]

[6]

- 5 A forest is burning so that, t hours after the start of the fire, the area burnt is A hectares. It is given that, at any instant, the rate at which this area is increasing is proportional to A^2 .
 - (i) Write down a differential equation which models this situation. [2]
 - (ii) After 1 hour, 1000 hectares have been burnt; after 2 hours, 2000 hectares have been burnt. Find after how many hours 3000 hectares have been burnt. [6]
- 6 (i) Show that the substitution $u = e^x + 1$ transforms $\int \frac{e^{2x}}{e^x + 1} dx$ to $\int \frac{u 1}{u} du$. [3]
 - (ii) Hence show that $\int_0^1 \frac{e^{2x}}{e^x + 1} dx = e 1 \ln\left(\frac{e + 1}{2}\right)$. [5]

7 Two lines have vector equations

$$r = i - 2j + 4k + \lambda(3i + j + ak)$$
 and $r = -8i + 2j + 3k + \mu(i - 2j - k)$,

where a is a constant.

- (i) Given that the lines are skew, find the value that a cannot take. [6]
- (ii) Given instead that the lines intersect, find the point of intersection. [2]

8 (i) Show that
$$\int \cos^2 6x \, dx = \frac{1}{2}x + \frac{1}{24}\sin 12x + c.$$
 [3]

(ii) Hence find the exact value of
$$\int_0^{\frac{1}{12}\pi} x \cos^2 6x \, dx.$$
 [6]

9 A curve is given parametrically by the equations

$$x = 4\cos t$$
, $y = 3\sin t$,

where $0 \le t \le \frac{1}{2}\pi$.

(i) Find
$$\frac{dy}{dx}$$
 in terms of t . [3]

(ii) Show that the equation of the tangent at the point P, where t = p, is

$$3x\cos p + 4y\sin p = 12. ag{3}$$

- (iii) The tangent at P meets the x-axis at R and the y-axis at S. O is the origin. Show that the area of triangle ORS is $\frac{12}{\sin 2p}$.
- (iv) Write down the least possible value of the area of triangle ORS, and give the corresponding value of p. [3]

1		$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$	B1		s.o.i. e.g. $2x \frac{dy}{dx} + y$
		$\frac{d}{dr}(y^2) = 2y\frac{dy}{dr}$	B1		
		Substitute (1,2) into their differentiated equation	M1 dep a	at	Or attempt to solve their diff equation for $\frac{dy}{dx}$
		and attempt to solve for $\frac{dy}{dx}$. [Allow subst of (2,1)]	least 1 x	В1	and then substitute (1,2)
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -2$	A1	4	
2	(i)	$1+(-2)(-3x)+\frac{(-2)(-3)}{12}(-3x)^2+\dots ignore)$	M1		State or imply; accept $-3x^2 & -9x^2$
		= 1 + 6x	B 1		Correct first 2 terms
		$\dots + 27x^2$	A1	3	Correct third term
	(ii)	$(1+2x)^2(1-3x)^{-2}$	M1		For changing into suitable form, seen/implied
		Attempt to expand $(1+2x)^2$ & select (at least) 2	M1		Selection may be after multiplying out
		relevant products and add $(Accept 55x^2)$	A2√	4	If (i) is $a + bx + cx^2$, f.t. $4(a+b)+c$
		SR 1 For expansion of $(1+2x)^2$ with 1 error, A1 $\sqrt{2}$			
		<u>SR 2</u> For expansion of $(1+2x)^2$ & > 1 error, A0			
		Alternative Method For correct method idea of long division	M1		
		$1 \dots +10x \dots +55x^2$	A1,A1,A	1(4)	
3	(i)	$\frac{A}{x} + \frac{B}{3-x} & \text{c-u rule or } A(3-x) + Bx = 3-2x$	M1		Correct format + suitable method
		$\begin{array}{ccc} x & 3-x \\ 1 & \end{array}$	A1		
		$\frac{1}{x}$	AI		seen in (i) or (ii)
		$-\frac{1}{3-x}$	A1	3	ditto; $\frac{1}{x} - \frac{1}{3-x}$ scores 3 immediately
	(ii)	$\int \frac{1}{x} (\mathrm{d}x) = \ln x \text{ or } \ln x $	B1		
		$\int \frac{1}{3-x} (dx) = -\ln(3-x) \text{ or } -\ln 3-x $	B1		Check sign carefully; do not allow $ln(x-3)$
		Correct method idea of substitution of limits	M1		Dep on an attempt at integrating
		$\ln 2 (+ \ln 1 - \ln 1) - \ln 2 = 0$ Alternative Method	A1	4	,
		If ignoring PFs, $\ln x(3 - x)$ immediately	B2	(4)	$\ln x(x-3) \to 0$
		As before	M1,A1	(4)	
	(iii)	Suitable statement or clear implication e.g. Equal amounts (of area) above and below (axis)			
		or graph crosses axis or there's a root	B1	1	
		(Be lenient)			

4	(i) Working out $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$ or $\mathbf{c} - \mathbf{a}$ or $\mathbf{a} - \mathbf{c}$ $= \pm (-3\mathbf{i} - \mathbf{j} - \mathbf{k}) \text{or } \pm (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Method for finding magnitude of <u>any</u> vector Method for finding scalar product of <u>any</u> 2 vectors Using $\cos \theta = \frac{a \cdot b}{ a b }$ AEF for <u>any</u> 2 vectors	M1) A1) M1) M1 M1	Irrespective of label If not scored ,these 1 st 3 marks can be awarded in part (ii)
	[Alternative cosine rule method $ \overrightarrow{BC} = \sqrt{6}$	B1	
	Cosine rule used	M1	'Recognisable' form
	$45.3^{\circ}, 0.79(0), \frac{\pi}{3.97}$ (45.289378, 0.7904487)	A1 6	Do not accept supplement (134.7 etc)
	(ii) Use of $\frac{1}{2} \overrightarrow{AB} \overrightarrow{AC} \sin \theta$	M1	$\left \text{Accept} \left \frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC} \right \right $
	3.54 (3.5355) or $\frac{5\sqrt{2}}{2}$	A1 2	Accept from correct supp (134.7 etc)
5	(i) $\frac{dA}{dt}$ or kA^2 seen	M1	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = kA^2$	A1 2	
	(ii) Separate variables + attempt to integrate	*M1	Accept if based on $\frac{dA}{dt} = kA^2$ or A^2
	$-\frac{1}{A} = kt + c \text{or} -\frac{1}{kA} = t + c \text{or} -\frac{1}{A} = t + c$	A1	
	Subst one of $(0,0)$, $(1,1000)$ or $(2,2000)$ into eqn. Subst another of $(0,)$, $(1,1000)$ or $(2,2000)$ into eqn Substitute $A = 3000$ into eqn with k and c subst	dep*M1 dep*M1 dep*M1	Equation must contain k and/or c This equation must contain k and c
	$t = \frac{7}{3}$ ISW	A1 6	Accept 2.33, 2h 20 m
6	(i) Attempt to connect du and dx e.g. $\frac{du}{dx} = e^x$	M1	But not $du = dx$
	Use of $e^{2x} = (e^x)^2$ or $(u-1)^2$ s.o.i.	A1	
	Simplification to $\int \frac{u-1}{u} (du)$ WWW	A1 3	AG
	(ii) Change $\frac{u-1}{u}$ to $1-\frac{1}{u}$ or use parts	M1	If parts, may be twice if $\int \ln x dx$ is involved
	$\int \frac{1}{u} du = \ln u$	A1	Seen anywhere in this part
	Either attempt to change limits or resubstitute Show as $e + 1 - \ln(e + 1) - \{2 \text{ or } (1 + 1)\} + \ln 2$	M1 (indep)	Expect new limits e+1 & 2
	WWW show final result as $e - 1 - \ln\left(\frac{e+1}{2}\right)$	A1 5	AG
7	 (i) Produce at least 2 of the 3 relevant eqns in λ and μ Solve the 2 eqns in λ & μ as far as λ = or μ = 1st solution: λ = -2 or μ = 3 2nd solution: μ = 3 or λ = -2 f.t. Substitute their λ and μ into 3rd eqn and find 'a' Obtain a = 2 & clearly state that a cannot be 2 (ii) Subst their λ or μ (& poss a) into either line eqn Point of intersection is -5 i -4 j N.B. In this question, award marks irrespective of lal 	M1 M1 A1 A1√ M1 A1 6 M1 A1 2	e.g. $1 + 3\lambda = -8 + \mu$, $-2 + \lambda = 2$ -2μ Accept any format No f.t. here

8	(i)	Integration method Attempt to change $\cos^2 6x$ into $f(\cos 12x)$ $\cos^2 6x = \frac{1}{2}(1 + \cos 12x)$ $\int = \frac{1}{2}x + \frac{1}{24}\sin 12x + c$ Differentiation method Differentiate RHS producing $\frac{1}{2} + \frac{1}{2}\cos 12x$ (E) Attempt to change $\cos 12x$ into $f(\cos 6x)$ Simplify (E) WWW to $\cos^2 6x + \text{satis finish}$	M1 A1 A1 B1 M1 A1 3	with $\cos^2 6x$ as the subject of the formula AG Accept $\frac{1}{2} \left(x + \frac{1}{12} \sin 12x \right)$ Accept $\pm -2 \cos^2 6x + -1$
	(ii)	Parts with $u = x$, $dv = \cos^2 6x$ $x(\frac{1}{2}x + \frac{1}{24}\sin 12x) - \int (\frac{1}{2}x + \frac{1}{24}\sin 12x)dx$	*M1 A1	Correct expression only
		$\int \sin 12x dx = -\frac{1}{12} \cos 12x$ Correct use of limits to whole integral	B1 dep*M1	Clear indication somewhere in this part Accept () (-0)
		$\frac{\pi^2}{288} - \frac{\pi^2}{576} - \frac{1}{288} - \frac{1}{288}$	A1	AE unsimp exp. Accept 12x24,sin π here
		$\frac{\pi^2}{576} - \frac{1}{144}$ S.R. If final marks are A0 + A0, allow SR A1 for	+A1 6	Tolerate e.g. $\frac{2}{288}$ here $0.01/0.010/0.0101/0.0102/0.0101902$
9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}r}}$	M1	Used, not just quoted
		$\frac{dx}{dt} = -4 \sin t$ or $\frac{dy}{dt} = 3 \cos t$	*B1	
		$\frac{dy}{dx} = -\frac{3\cos t}{4\sin t} \text{ or } \frac{3\cos t}{-4\sin t} $ ISW		Also $\frac{-3\cos t}{4\sin t}$ provided B0 not awarded
		SR: M1 for Cartesian eqn attempt + B1 for $\frac{d}{dx}$	$-(y^2) = 2y \frac{\mathrm{d}y}{\mathrm{d}x}$	+ A1 as before(must be in terms of <i>t</i>)
	(ii)	$y - 3\sin p = \left(\text{their } \frac{dy}{dx}\right)(x - 4\cos p)$	M1	Accept p or t here
		$\underline{\text{or}} \ y = \left(\text{their } \frac{dy}{dx}\right)x + c \text{ \& subst cords to find c}$		Ditto
		$4y\sin p - 12\sin^2 p = -3x\cos p + 12\cos^2 p$	A1	Correct equation cleared of fractions
		$\underline{\text{or }} c = \frac{12\sin^2 p + 12\cos^2 p}{4\sin p}$		
		$3x\cos p + 4y\sin p = 12 \qquad \text{WWW}$	A1 3	AG Only <i>p</i> here. Mixture earlier \rightarrow A0
	(iii)	Subst $x = 0$ and $y = 0$ separately in tangent eqn	M1	to find <i>R</i> & <i>S</i>
		Produce $\frac{3}{\sin p}$ and $\frac{4}{\cos p}$	A1	Accept $\frac{12}{4\sin p}$ and/or $\frac{12}{3\cos p}$
		Use $\Delta = \frac{1}{2} \left(\frac{3}{\sin p} \cdot \frac{4}{\cos p} \right) = \frac{12}{\sin 2p}$ WWW	A1 3	AG
	(iv)	Least area = 12	B1	
		$p = \frac{1}{4}\pi$ as final or only answer S.R. $45^{\circ} \rightarrow B1$;	B2 3	These B marks are independent. S.R. [-12 and e.g. $-\pi / 4 \rightarrow B1$]